
Bridging HPC and Quantum Systems using
Scientific Workflows

Samuel T. Bieberich[0000−0001−9631−647X]1,2, Ketan C.
Maheshwari[0000−0001−6852−5653]2, Sean R. Wilkinson[0000−0002−1443−7479]2,

Prasanna Date[0000−0002−1664−069X]2, In-Saeng Suh[0000−0002−6923−6455]2, and
Rafael Ferreira da Silva[0000−0002−1720−0928]2

1 Texas A&M University, College Station, TX, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA⋆⋆

sambieberichtamu@tamu.edu,

{maheshwarikc,wilkinsonsr,datepa,suhi,silvarf}@ornl.gov

Abstract. Quantum computing offers intriguing potential to solve cer-
tain kinds of problems with unprecedented speed. Quantum comput-
ers are unlikely to replace classical computers in the future, but may
work in tandem with them to perform complex tasks by utilizing their
complementary strengths. Indeed, most quantum computers today are
made available to users via cloud-based Application Programming In-
terfaces (APIs) which must be called remotely from classical computers.
Unfortunately, this usage model presents obstacles for a seamless ap-
plication execution connecting quantum computers with classical High
Performance Computing (HPC) systems. Workflow management systems
can help overcome these obstacles.
In this work, we apply the scientific workflows paradigm to bridge the
gap between quantum and classical computing – specifically, between the
quantum and HPC systems available through the Oak Ridge Leadership
Computing Facility (OLCF). We provide three fully automated foun-
dational examples for demonstration: the Traveling Salesman Problem,
Grover’s Search Algorithm, and Shor’s Factoring Algorithm. We employ
workflows to generate inputs from OLCF’s HPC systems and transfer
them to IBM Quantum systems in the cloud, where the quantum calcu-
lations produce results which return to OLCF for post processing.
This workflows-based approach provides additional benefits including (a)
end-to-end programmatic automation of the entire process, (b) an out-
of-the-box tool for interfacing with HPC schedulers and quantum mid-
dleware, and (c) concurrency of independent tasks such as running the
same algorithm over a simulator and a real quantum device simultane-
ously. Although the current technological limitations of quantum com-
puters prevent the use of these algorithms to solve real-life problems at
scale, the workflows-based approach nevertheless unites these two pow-
erful computing paradigms in a way that shows immense promise for the
future.

⋆⋆
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the US Department of Energy (DOE). The publisher acknowledges the US government license
to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

ar
X

iv
:2

31
0.

03
28

6v
1 

 [
qu

an
t-

ph
] 

 5
 O

ct
 2

02
3

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


2 S. T. Bieberich et. al.

Keywords: High Performance Computing, Quantum Computing, Scientific Work-
flows

1 Introduction

Five decades after its initial statement, Moore’s Law [1] is arguably “dead” be-
cause the rate at which transistor technology can continue to be miniaturized
is now limited by the physical limits of transistors themselves [2]. The density
of transistors on a computer chip has long been a strong indicator of the per-
formance of the chip. Taken together, these facts would seem to foreshadow
grave consequences for the advancement of classical computing – and by exten-
sion, High Performance Computing (HPC). Advances in quantum computing
have been encouraging for the HPC community, which is ever in need of greater
computational performance.

While some of the contemporary quantum computing offerings provide an API
to interact with the various layers of a quantum ecosystem, none provide an inter-
face that could simultaneously interact with both traditional HPC and quantum
computing. Workflow management systems are very well adapted to traditional
HPC systems [3]. For instance, most workflow systems natively provide features
to automatically perform HPC job management portably while others provide
interfaces for reliable data transfer. As such, workflow systems are well-suited to
provide and develop “attachments” to a new system. In this work, we demon-
strate how a workflow system may be used to bridge the gap between HPC and
quantum computing platforms.

Despite being a promising frontier of computing, quantum computers, in their
current state-of-the-art, have several limitations. For example, current supercon-
ducting quantum processors need to be kept extremely cold around absolute zero
temperatures, and even the largest universal quantum computers have less than
433 qubits available [4]. Moreover, these chips are unable to allow for all of the
qubits to be entangled directly, thereby severely limiting connections between
certain qubits. This results in two specific limitations. First, today’s quantum
computers solve problems that are very small in size – this is practical for ex-
perimental purposes only. Second, any internal and external noises can cause
“errors” into the quantum system causing programs to often give incorrect out-
puts and requiring them to be run multiple times in order to obtain results that
are inferenced statistically.

Figure 1 shows the overall schema of our setup. A local terminal gets connected
to a login node of the HPC system (which could potentially be replaced by a
graphical user interface such as Jupyter notebooks). A workflow system that is
running on the HPC system generates the inputs and a preprogrammed quantum
circuit. The workflow system invokes the quantum resources by submitting the
circuit and input data with appropriate authentication credentials. The quan-
tum system performs the necessary compilations and computing and produces
the outputs. The workflow system that is interfaced with the appropriate API



Bridging HPC and Quantum Systems using Scientific Workflows 3

Fig. 1. Overall workflow schema between tradional HPC and Quantum Systems.

collects the results and brings them back at the HPC site. The code and other
implementation artefacts are publicly available on Github [5].
On the HPC side, we use Crusher, a precursor to the upcoming Frontier su-
percomputer, and Andes, a commodity cluster at OLCF for the experiments
presented in this paper. Crusher [6] is OLCF’s moderate-security system that
contains identical hardware and similar software as the Frontier system (the first
exascale HPC system). It is used as an early-access testbed for the Center for
Accelerated Application Readiness (CAAR) and Exascale Computing Project
(ECP) teams as well as OLCF staff and the vendor partners. The system has
2 cabinets, the first with 128 compute nodes and the second with 64 compute
nodes, for a total of 192 compute nodes. Each compute node is equipped with 64-
core AMD EPYC 7A53 “Optimized 3rd Gen EPYC” CPU, four AMD MI250X,
each with 2 Graphics Compute Dies (GCDs) for a total of 8 GCDs per node
with access to 64 GiB of HBM2E, 512 GB of DDR4 memory, and connection to
a 250 PB GPFS scratch filesystem.
The rest of the paper is organized as follows. Section 2 describes the algo-
rithm, implementation, and workflow-bridging schema for the Traveling Sales-
man Problem. Sections 3 and 4 describe the Grover’s search and Shor’s factoring
algorithms, respectively. Both the implementations follow the same workflow-
bridging schema as described in section 2. Section 5 describes the related work
from both research and industry. Finally, section 6 presents our conclusions and
future work.

2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well known fundamental optimiza-
tion problem with significant practical importance. Classified as an NP-Hard
problem, the TSP is not solvable in polynomial time, meaning as more nodes
are added, the problem gets exponentially harder for classical computers [7].
The TSP asks for the fastest way to visit a number of cities N (also referred
to as nodes), given the distances between them, and make it back, while travel-
ing the shortest distance. This results in (N − 1)! different routes that may be
taken. While there are many current algorithms to solve TSP implementations
with relatively few nodes, even the largest supercomputers are unable to find



4 S. T. Bieberich et. al.

Fig. 2. Example NetworkX map for a four-node TSP.

the best distance with hundreds of nodes in polynomial time. Figure 2 shows a
an example of a randomized map for four cities generated using NetworkX [8].
The TSP is not hard to compute with a calculator at four nodes, much less
a supercomputer, however the limited access to powerful quantum computers
led us to create the circuit for only four nodes. Each time our code was imple-
mented on HPC, one of these NetworkX maps was imported to our local laptops,
and when the quantum jobs were completed, we checked the answers. Roughly
rectangular maps such as the one pictured in figure 2 often lead to two paths
with very similar distances. This error is accepted in current TSP algorithms on
classical computers (albeit with much more nodes), and thus we assumed that
TSPs with that particular shape could have two sufficient correct paths.

2.1 Algorithm

The process for designing the TSP 4-node circuit utilizes phase estimation. Phase
estimation is a method that allows for users to read information about an oper-
ation from qubits in superposition [9]. We initially attempted to use Quantum
Approximate Optimization Algorithms (QAOA), but these algorithms did not
offer the exact answer we were pursuing with the limited access to quantum
qubits [10,11]. It is worth noting that these algorithms could be better for very
large TSP problems [10].
The algorithm we used utilized matrices that would be brute forced by classical
computers and converted to phases. These phases are often represented on the
Bloch Sphere, a well-known 3D representation of how qubits physically work,
and are synonymous with rotations around an axis of the sphere. After getting
unitary matrices for each of the four nodes, these can be converted to high-level
gates in a quantum algorithm, primarily composed of Controlled-Not (CNOT),
Rotation, and SWAP gates. A concurrent step involves determining the Eigen-
states. As aforementioned, there are (N − 1)! paths in a TSP, where N is the
number of nodes being tested. Each path can be mapped to a unique Eigenstate,
which for the rest of the program must be represented in binary, so both the
classical and quantum computers can read it. The paths are converted to binary
Eigenstates via the function i(j), which defines the TSP.

|ψ⟩ = ⊗j |i(j)− 1⟩ (1)

For example, in the path 1-2-3-4-1, if the path from node 2 to node 3 is taken,
then i(3) = 2, thus j is the number for the node you are traveling to. After taking



Bridging HPC and Quantum Systems using Scientific Workflows 5

Fig. 3. Circuit for 4 node TSP with Eigenstate 11000110, or path 1-2-3-4-1

the tensor product for each value 1 through 4, the Eigenstate is completed. To
further optimize the program, it can be proven that the paths 1-2-3-4-1 and 1-4-
3-2-1 are the same, thus the number of Eigenstates can be reduced to (N−1)!/2,
or 3 for a four-node TSP.

2.2 Implementation

Figure 3 shows the high-level gates for the 4 node TSP circuit. Using the Phase
Estimation method, there are two registers, the Unit and Eigenstate (shortened
to eigen in figure 3) registers. The quantum part of the algorithm can be split
into four parts. The Unit register is initialized with Hadamard Gates, putting
each qubit into a superpositioned state. The Eigen register, as expected, is ini-
tialized based on the Eigenstate the circuit is testing. Because there are three
Eigenstates, there are three circuits in this algorithm that are tested altogether.
Also, because the Eigenstates in binary are eight digits long, the register is com-
posed of 8 qubits. Going from index 0 to 7 of the binary Eigenstate, an X gate
is applied to the initialization step of the Eigen register at the corresponding
Qubit index. X gates are fundamentally identical to Boolean NOT gates, and
flip the intial states of the qubits from 0 to 1, offering an “input” to the TSP
circuit.
The second step of the process is the actual Phase Estimation. As explained
above, the Phase Estimation part of the program can be decomposed into matri-
ces which convert the Eigenstates to, in conjunction with the QFT, eigenvalues,
which can be read by a computer. Phase Estimation circuits are composed of
Controlled-Unitary (CU) gates, which accept a control value from the unit regis-
ter, and if the control value is measured as a 1, the Unitary in the Eigen register



6 S. T. Bieberich et. al.

runs [9]. There are the same number of CU gates as there are qubits in the unit
register. It is worth mentioning that the unit register, unlike the Eigen register,
can be increased or decreased in size. The code from Qiskit’s Alpha Textbook
used 6 qubits, and through testing, we determined that adding more qubits only
marginally increased accuracy, and decreasing the qubits sacrificed accuracy (see
Section 2.4).

The third step of the process is the Inverse Quantum Fourier Transform. The
QFT−1 finishes the conversion from Eigenstates to eigenvalues, and prepares
the unit register to be measured. Lastly, the results are measured to a classical
register.

2.3 HPC-Quantum Workflow

In this section, we describe the overall workflow for TSP. The workflow scheme re-
mains the same for the other alforithms, however, it was arguably most complex
for TSP. After completing the code and basic sanity tests over local hardware,
we uploaded the Jupyter Notebook code into HPC enabling rapid prototyping.
For each algorithm, we needed to save our IBMQ accounts with our unique API
tokens. After this code ran, we were able to use the “load account” function from
the Qiskit library to load our credentials, rather than leaving the long API token
in the file. We did this due to security concerns, as we did not want to have to
change our API token very often, as then each Jupyter notebook would need to
be adjusted for our testing with the other algorithms running concurrently.

After loading the credentials, the rest of the code was split into five main steps:

– The code to create random coordinates for each of the four nodes and then
graphing them into the TSP format. A file is created that sends a picture of
the node map to the local computer.

– A python function reads the coordinates from the map and finds the dis-
tances between each node. Another, overarching function converts these dis-
tances into a matrix, then a python list so that it can interface correctly
with the Controlled-U gate creation function.

– The rest of the circuit is built via Qiskit, including the inverse QFT, which
to conserve gates and allow for scalability, was automatically produced from
the Qiskit library in the TSP program.

– The three circuits are sent together, as a list, to IBMQ. Each time, ibmq
kolkata was the least busy processor, so each test (besides the simulations)
was run on it. We ran the circuits four times, each taking three to six hours
in the queue and approximately 2 and a half minutes to run, with 4,000 shots
(default value).

– The outputs are read via two variables: The most frequent counts are de-
termined, and functions find which path is the shortest and verify that it
is right. The results are printed in the terminal. IBMQ creates a histogram
on their web portal, allowing for a more readable graph than the Qiskit
histograms that are readable from the terminal.



Bridging HPC and Quantum Systems using Scientific Workflows 7

Fig. 4. 1-2-3-4 path TSP circuit results from ibmq kolkata. Correct answer highlighted.

The entire aforementioned workflow was automated using Parsl [12], a popular
workflow management tool. In addition to automating the workflow, Parsl allows
for python functions to run concurrently to increase the speed of implementation.
We were able to complete the workflow with several steps running concurrently.
For instance, the NetworkX map process takes several seconds, so we organized it
to run concurrently with the quantum circuit initialization. We were able to run
the circuit on the IBMQ QASM simulator and ibmq kolkata quantum computer
simultaneously, allowing for predictive results from the simulator to generate as
the circuit awaits in the queue for the real quantum computer. We refer readers
to our Github codebase for further implementation details [5].

2.4 Results

The results are printed as binary strings that are 6 digits long (one for each
qubit). Due to the nature of the Phase Estimation, the largest numbers represent
the shortest paths that may be taken. For example, in one test we ran, the largest
value was 35, which was returned from circuit one, associated with Eigenstate
11000110, or 1-2-3-4. This means that the shortest path through the TSP is
1-2-3-4-1.
In terms of measured results, we tested the circuit first through HPC and
IBMQ’s ibmq kolkata 27 qubit cloud quantum computer, then via local and
IBMQ’s ibmq qasm simulator, which can operate up to 32 qubits. The real quan-
tum computer, as exhibited in Figure 4, features a significant amount of noise,
rendering the results inconclusive. The correct result for the TSP generated with
this run should be 101000, which has a greater frequency than many of the other
measured values, however it is not the highest, and almost every measured value
is represented far too much. Due to the size of the circuit, too much noise was
likely introduced, resulting in significant error.
On the other hand, the ibmq qasm simulator proved to offer much more ac-
curate results. With the same path, 1-2-3-4-1, the true result of 101000 was
consistently returned. The reason this result was so much more accurate has to
do with the composition of the QASM simulator. The QASM simulator runs on



8 S. T. Bieberich et. al.

a classical computer via the Cloud, and while it does model noise, it supports all
of the gates in the circuit we wrote, meaning the compiler step does not need to
split the CU gates into thousands of simpler gates, rather it only has hundreds.
It ignores the calibration issues that modern quantum computers need, and as-
sumes that all gates are connected, decreasing gate count by several magnitudes.
Full results, along with results for the Grover’s and Shor’s algorithms code, are
publicly available online [5].

3 Grover’s Search Algorithm

Grover’s algorithm finds an item in an unsorted list of length N using only
O(

√
N) operations, as opposed to O(N) operations on average for a classical

computer [13]. In a nutshell, the algorithm corresponds to a bar graph with one
bar representing each index of the computational list [14]. The oracle in the
Grover’s algorithm finds the value being searched for and flips it from a value
of 1 to -1. Then, it finds the average of all of the values in the list, and flips
each index over said value. This way, the index at which the value is at has
a significantly larger magnitude than all other indices, thus making it easy to
identify.

3.1 Implementation

Quantum programs in IBMQ’s Qiskit programming language are composed of
quantum circuits. These circuits are composed of a variety of quantum gates,
similar in concept to Boolean Logic gates in Digital Computers. These circuits
are read from left to right, and are composed like musical staves, with one qubit
represented by each horizontal line.
Figure 5 shows an example of the most basic part of Grover’s Algorithm for the
integer value 15. (Each section is separated by barriers for formatting purposes.)
The first section uses Hadamard (H) gates to put each qubit into superposition.
The second section is a manually created Controlled-controlled-controlled-Z gate
(CCCZ), with controls on qubits 0-2 and a Z gate applied to q3. This section
of the circuit is the Oracle, and changes depending on the value input. Oracles
are often referred to as “Black Boxes”, and are created in most cases by the
processor. The rest of the program is designed to help you discover what the
oracle is. If the value were 0, each qubit would have X (NOT) gates applied on
either side of the CCCZ gate. The third section is the Amplification function.
This is the part of the algorithm where each value is flipped over the average
of all indices [15]. Lastly, the fourth and final section of the circuit measures
each qubit. Each of the four measurement gates convert the qubits from their
quantum register to a classical register, which a regular computer can then read
as a 1 or 0. Since there are four qubits, the integer values 0-15 can be returned.
Grover’s Algorithm is split into three steps when explained, step one being
Initialization, then a Grover Operation, then Measurement. The second and third
sections of our circuit are combined into one statement, the Grover Operator.



Bridging HPC and Quantum Systems using Scientific Workflows 9

Fig. 5. IBMQ Matplotlib circuit for Grover’s Algorithm, with one implementation of
the Grover Operator. Value being searched for is 15.

Grover’s Algorithm is most accurate when the Grover Operator is repeated
√
N

times, where N is the number of qubits. Since our implementation of Grover’s
Algorithm has 4 qubits, the Grover Operator must be completed twice before
measurements are made.

3.2 Results

We designed the quantum circuit and the rest of the program in Jupyter Note-
books with the IBMQ’s Qiskit [16]. To run the program via a workflow encom-
passing HPC and quantum cloud computers, we first uploaded the completed
program on the HPC side by adding it to a GitHub repository and then pulling
the code to a terminal. The program randomly chose a number between 0 and
15. Once this number was chosen, it was printed and saved as a variable (to
compare with results), then a loop created the unique Grover Oracle. Once this
was complete, the circuit was sent to IBM’s ibmq-belem 5 qubit quantum com-
puter. After 1024 shots of the circuit, the results are brought back to the HPC
side, which makes a histogram displaying the results. On average, 92% of the
shots returned the number input.

4 Shor’s Factoring Algorithm

More than any other quantum algorithm, Peter Shor’s factoring algorithm has
created the most buzz for physicists and computer scientists. Current encryption
techniques, such as the prevalent RSA encryption in everything from governmen-
tal to financial resources, are composed of keys made of the factors of RSA-2048,
a 2048 bit number. These factors are still unknown, and almost impossible to
find, because they are both prime numbers. This makes RSA-2048 a semi-prime
integer, the hardest to factor, as it is divisible by nothing but those two numbers.
Shor’s algorithm is composed of a series of steps, starting with a classical com-
puter, then transferring a circuit to a quantum computer, and finally reading the
results on a classical computer to determine if the circuit needs to be run on the
quantum device again with a different guessed value. The process is based on an



10 S. T. Bieberich et. al.

algorithm that has long been theorized, but is very difficult to implement at a
large scale on regular computers: the Period Finding Problem. For a given num-
ber N that we wish to factor and a randomly selected number a (1 < a < N),
the period finding problem states that there exists a number r such that ar

mod N = 1. This leads to the greatest common divisor of ar/2 ± 1 and N being
one of the prime factors of N . The steps incurred in the Shor’s algorithm are:

1. Pick a random number a between 1 and N , where N is the number being
factored.

2. Compute the greatest common divisor (GCD) of a and N .
3. If the GCD of a and N is not equal to 1, then a is one of the factors as

required. The other factor can be computed by dividing N by a.
4. Else, run the quantum period finding subroutine on a quantum computer

with N and a as the inputs.
5. Determine the period r by interpreting the results from the quantum period

finding subroutine on a classial computer.
6. If the r is 1, redo steps 1–5 with a different value for a.
7. If r is odd, restart the process with a different value for a.
8. If r is neither 1 nor odd, compute the GCD of ar/2 ± 1 and N .
9. The GCD should be one of the factors of N as required. Divide N by the

GCD returns the second factor as well.

Using these steps, RSA-2048 and other large semi-primes could be factored in
the future, though thousands of coherent qubits and an equally large quantum
volume would be needed to implement this program for such a large number.
Presently, quantum computers can factor semi-primes up to 21 only [13].

4.1 Implementation

The circuit for Shor’s algorithm that we used utilizes two qubit registers, one that
encompasses 0-2 qubits, called the work register, and the second encompassing
qubits 3-6, called the control register. Only the work register is measured in the
end.
Like the Grover’s algorithm circuit, Shor’s circuit can be broken into four dis-
tinct sections: Initialization, Modular Exponentiation, Inverse Quantum Fourier
Transform (QFT−1), and Measurement, as shown in figure 6. In the Initializa-
tion step, all three qubits in the work register are put into superposition, and
a NOT gate is applied to the final qubit in the control register. The Modular
Exponentiation stage uses U2j gates to perform a Quantum Phase Estimation
on the three work register qubits, resulting in the work register ending in a state
axmodN. The Inverse QFT takes these values and creates interference between
these states, turning the current circuit value and converting it to a Fourier
basis [17].

QFT |x⟩ = 1/
√
N

N−1∑
y=0

e2πixy/N = |y⟩ (2)



Bridging HPC and Quantum Systems using Scientific Workflows 11

Fig. 6. IBMQ circuit for Shor’s algorithm, with a = 7, on 7 qubits

Fig. 7. Results for Shor’s algorithm with a = 13, on ibm nairobi

Fig. 8. Results for Shor’s algorithm with a = 13, on IBM’s QASM simulator (local)
backend

Lastly, the measurement stage, like in Grover’s algorithm, measures the results
and sends them to a classical register. Note that the measurement gates only
apply to qubits 0, 1, and 2.

4.2 Results

The larger a circuit in Qiskit is, the more computational time it takes to run
and thus more noise is exposed to the delicate qubits running the operations.



12 S. T. Bieberich et. al.

Thus, the results become further from the expected values, as opposed to the
smaller Grover circuit. Figure 8 showing the results from a simulator (IBMQ’s
qasm simulator), and figure 7 showing the same circuit run on a real quantum
device, ibm nairobi. While figure 8 clearly shows a period of 2, figure 7 is less
obvious, and requires knowledge of what the expected answer should be to de-
termine the real period.
Once again, these circuits were executed from HPC terminal, and results were
printed to files we returned to our local computers. Figure 7 is from the IBMQ
Jobs recap page on their website, as it offers a less cluttered graph than the
default output that can be run via Qiskit. This graph has an almost perfect
four-way distribution of the measured counts: 0, 2, 4, and 6, in binary. The way
the circuit was designed, 0 always features a large distribution (such as in 7),
and is thus ignored, but the following values, 2, 4, and 6, exhibit the period of
the function.

5 Related Work

Several works have researched the ways to implement quantum workflows for
classical-quantum hybrid computing. One recent work experiments with work-
flows using the D-Wave quantum annealer, reconciling with the inherent diffi-
culty in creating cloud-based hybrid workflows for ‘big science’ jobs [18]. Ad-
ditionally, in the previous editions of ICCS, work such as [19], proposes the
“QuantMe” framework, which models, transforms, and then computes data via
quantum workflows at the research level. It takes into account the inherent noise
in NISQ era quantum computers, and how conversions from classical to quantum
algorithms are affected by this significant shortcoming in modern technology [20].
This helps to mitigate or eliminate the incredibly technical elements that must
take place to set up and read the results from quantum algorithms, which could
slow research such as ours. Expanding on this theme, [21] detailed the running
of a similar “The Total Weighted Tardiness Problem”, which is NP-hard, defines
a series of tasks with due dates which must be completed on a machine, with the
goal to determine in which order to complete the tasks to minimize tardiness.
Quantum annealing devices like D-Wave’s are well-adapted to these problems,
as they do not require the running of every combination of sequences to obtain
the lowest result. The D-Wave quantum computer has been used to solve a wide
range of problems across various complexity classes such as training machine
learning models [22–24], protein folding [25], graph partitioning [26] and port-
folio optimization [27]. Combined with our work, optimal workflow paths may
be determined when a multitude of jobs are queued. On cloud resources like
IBMQ, this may help reduce wait times, while offering a practical application
for secondary quantum systems.
Researchers at ORNL and Alpine Quantum Technologies recently published a
work outlining the feasibility of HPC-Quantum Computing hybrid processes in
computing centers [28]. The outcomes reinforce that the hardware and software
for HPC and quantum computers are compatible with current technology, and



Bridging HPC and Quantum Systems using Scientific Workflows 13

that the most significant limitation is in the quantum hardware, which suffers
from scaling and qubit coherence issues.

Lastly, in the industry, a few companies are already committed to making
changes in the HPC world to implement a hybrid HPC and quantum computing
environment. One of the leaders in this field is Finland’s IQM, one of Europe’s
leading quantum computing firms. In their two part series “The Way Forward:
Bringing HPC and Quantum Computing Together”, they offer a three step pro-
cess to combine current HPC hardware and quantum computing resources [29].
The first step involves identifying ways that quantum algorithms can optimize
HPC workflows, such as in quantum simulations, weather tracking and predic-
tion software, or optimization problems. The second and third steps look at mid
and long term goals, for example, designing the systems needed based off of
the research goals and finally implementing a workflow between the supercom-
puters and quantum computer. They propose that the best way to ensure the
smooth flow of the process is to have HPC devices and quantum computers in
the same location, helping with troubleshooting and creating further interest in
the quantum capabilities the center has access to.

6 Conclusions and Future Work

We demonstrate the practicality of combining HPC and remote quantum re-
sources for certain applications that require both resources. We use the Parsl
workflow manager as we found it most conveniently adapted to the python plat-
form. However, a variety of workflow platforms are available and we believe the
same results may be achieved with any modern scientific workflow management
system. In other words, our work is agnostic to specific solutions used and a
validation for the workflows paradigm in general. Quantum devices are evolving
and will likely act as auxiliary processors alongside the CPU and GPU. New
low-level APIs to use such devices might be developed in the future. Currently,
though, workflow systems offer a familiar and promising approach to combining
the two.

In the future, we would like to test the same or similar algorithms on Quantin-
uum and Rigetti devices. The algorithms for both Shor’s and the TSP required
more credits than we were allotted for the project. Thus, we switched to IBMQ’s
resources, of which we had a significantly larger quota. If we had access to
Quantinuum or Rigetti fully, it could offer insight into running workflows with
changes in language. While IBMQ’s quantum computers all take code in Qiskit,
Quantinuum uses QASM and Rigetti uses pyQuil. Offering a workflow that could
convert a quantum circuit from any one of these languages to the others would
allow users much greater access to quantum machines, from Quantinuum’s H1-1
to Rigetti’s Aspen QPU. As research in Quantum Error Correction has peaked
in recent years, we may assume further optimization in new quantum processors,
allowing for larger circuits to run with less error, creating results more on par
with the simulators used in this project.



14 S. T. Bieberich et. al.

Acknowledgments. We acknowledge the use of IBM Quantum services for this work.

The views expressed are those of the authors, and do not reflect the official policy or

position of IBM or the IBM Quantum team. This research used resources of the Oak

Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility

supported under Contract DE-AC05-00OR22725.

References

1. G. E. Moore, “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,” IEEE Solid-
State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006.

2. T. N. Theis and H.-S. P. Wong, “The End of Moore’s Law: A New Beginning
for Information Technology,” Computing in Science & Engineering, vol. 19, no. 2,
pp. 41–50, 2017.

3. R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia, et al.,
“A Community Roadmap for Scientific Workflows Research and Development,” in
2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS),
pp. 81–90, 2021.

4. “The IBM Quantum Development Roadmap.” https://www.ibm.com/quantum/

roadmap. Accessed: 2023-02-01.

5. S. Bieberich, “HPC-QC-Workflows.” https://github.com/Sam-Bieberich/

HPC-QC-Workflows, 8 2022.

6. “Crusher.” https://docs.olcf.ornl.gov/systems/crusher_quick_start_

guide.html, 2022.

7. M. Jünger, G. Reinelt, and G. Rinaldi, “The Traveling Salesman Problem,” Hand-
books in operations research and management science, vol. 7, pp. 225–330, 1995.

8. A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using NetworkX,” tech. rep., Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

9. E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, Quantum Phase Estimation,
p. 155–169. O’Reilly, 2019.

10. T. R.-W. Bergamaschi, “Quantum Approximate Optimization Algorithms on the
Traveling Salesman Problem,” Medium, Feb 2020.

11. M. Radzihovsky, J. Murphy, and M. Swofford, “A QAOA solution to the traveling
salesman problem using pyQuil,” stanford.edu, May 2019.

12. Y. Babuji et al., “Parsl: Pervasive Parallel Programming in Python,” in Proceed-
ings of the 28th International Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC ’19, (New York, NY, USA), p. 25–36, Association for
Computing Machinery, 2019.

13. A. Adedoyin et al., “Quantum Algorithm Implementations for Beginners,” arXiv
preprint arXiv:1804.03719, 2018.

14. A. Abbas et al., “Learn Quantum Computation Using Qiskit,” 2020.

15. V. B. Karlsson and P. Strömberg, “4-qubit Grover’s algorithm implemented for
the ibmqx5 architecture,” 2018.

16. M. S. ANIS et al., “Qiskit: An Open-source Framework for Quantum Computing,”
2021.

17. M. Amico, Z. H. Saleem, and M. Kumph, “Experimental study of Shor’s factoring
algorithm using the IBM Q Experience,” Physical Review A, vol. 100, no. 1, 2019.

https://www.ibm.com/quantum/roadmap
https://www.ibm.com/quantum/roadmap
https://github.com/Sam-Bieberich/HPC-QC-Workflows
https://github.com/Sam-Bieberich/HPC-QC-Workflows
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html


Bridging HPC and Quantum Systems using Scientific Workflows 15

18. D. Tomasiewicz, M. Pawlik, M. Malawski, and K. Rycerz, “Foundations for Work-
flow Application Scheduling on D-Wave System,” in Computational Science – ICCS
2020, (Cham), pp. 516–530, Springer International Publishing, 2020.

19. D. Vietz, J. Barzen, F. Leymann, and K. Wild, “On Decision Support for Quan-
tum Application Developers: Categorization, Comparison, and Analysis of Exist-
ing Technologies,” in Computational Science – ICCS 2021, (Cham), pp. 127–141,
Springer International Publishing, 2021.

20. B. Weber, “QuantMe.” https://github.com/UST-QuAntiL/QuantME-
TransformationFramework, Aug 2022.

21. W. Bożejko, J. Pempera, M. Uchroński, and M. Wodecki, “Distributed Quantum
Annealing on D-Wave for the Single Machine Total Weighted Tardiness Scheduling
Problem,” in Computational Science – ICCS 2022, (Cham), pp. 171–178, Springer
International Publishing, 2022.

22. P. Date, C. Schuman, R. Patton, and T. Potok, “A classical-quantum hybrid ap-
proach for unsupervised probabilistic machine learning,” in Advances in Infor-
mation and Communication: Proceedings of the 2019 Future of Information and
Communication Conference (FICC), Volume 2, pp. 98–117, Springer, 2020.

23. D. Arthur and P. Date, “Balanced k-means clustering on an adiabatic quantum
computer,” Quantum Information Processing, vol. 20, pp. 1–30, 2021.

24. P. Date, D. Arthur, and L. Pusey-Nazzaro, “Qubo formulations for training ma-
chine learning models,” Scientific reports, vol. 11, no. 1, p. 10029, 2021.

25. T. Babej, M. Fingerhuth, et al., “Coarse-grained lattice protein folding on a quan-
tum annealer,” arXiv preprint arXiv:1811.00713, 2018.

26. H. Ushijima-Mwesigwa, C. F. Negre, and S. M. Mniszewski, “Graph partitioning
using quantum annealing on the d-wave system,” in Proceedings of the Second
International Workshop on Post Moores Era Supercomputing, pp. 22–29, 2017.

27. F. Phillipson and H. S. Bhatia, “Portfolio Optimisation using the D-Wave Quantum
Annealer,” in Computational Science–ICCS 2021: 21st International Conference,
Krakow, Poland, June 16–18, 2021, Proceedings, Part VI, pp. 45–59, Springer,
2021.

28. T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz,
“Quantum Computers for High-Performance Computing,” IEEE Micro, vol. 41,
pp. 15–23, sep 2021.

29. D. Berebichez, “The way forward: Bringing HPC and Quantum Com-
puting together (part 1 & 2).” https://www.meetiqm.com/articles/blog/

the-way-forward, Apr 2022.

https://www.meetiqm.com/articles/blog/the-way-forward
https://www.meetiqm.com/articles/blog/the-way-forward

	Bridging HPC and Quantum Systems using Scientific Workflows  

